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Summary

Current commercial CACE (Computer-Aided-Control-Engineering) environments

and tools place some severe restrictions on the user about the multi-objective control

system design, which are major obstacles to the wider application of advanced control

systems. In particular:

current tools require the user to specify indirect controller constraints, e.g.,

weighting matrices or transfer functions ("design knobs"), and then check that

the closed-loop system satisfies the actual requirements, e.g., overshoot. This

approach requires many design iterations and considerable insight by the user.

current tools require the user to have an intimate knowledge of the control

design algorithms and the real-time controller hardware. As a result, a very

high level of expertise is often required to make effective use of the tools.

To eliminate these obstacles, a CACE environment has been implemented in this

project to meet the following objectives:

* The user is able to design controllers directly from closed-loop specifications.

The user interacts with the environment through a GUI (Graphical User In-

terface) that eliminates the need for intimate knowledge of optimization and

control design algorithms.

The GUI capability exists to implement, interact, and modify the simulation

model on an automation and on-line basis during the numerical or real-time

simulation process.

In this new environment, the user's interaction stays at the level of design performance

specifications. Design problems can be posed and solved - and if necessary, the con-

troller can be tested through numerical simulation or implemented in real-time- all

without the user being overloaded by the details of the underlying toolbox language,

design and optimization algori'tl'ims, or hardware. The design environment integrates

the design phase and the simulation phase of a design cycle together, and provides a

complete and extensive treatment for practical design problems. In summary, with

the new CACE tool called CODA (Convex Optimization based Design Algorithm),

a larger class of design problems can be solved in a more complete and extensive way

by a broader range of users/
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1 Introduction

1.1 Motivation and Objective

A typical controller synthesis problem is to design a controller for a given single

plant in such a way that several requirements are satisfied. Obviously the most basic

requirement is

• stability

i.e., the controller must stabilize the plant, or somewhat more generally, place all

closed-loop poles in some prespecified region. Additional requirements include, but

are not restricted to:

• robustness against unmodeled sector-bounded perturbations

• minimum and maximum bandwidth for the controlled system

• specifications of the rise time and settling time for the step response

• maximum instantaneous amplitudes for each of the plant inputs

• maximum RMS (root-mean-square) levels to noise inputs

and so on. Current commercial CACE (Computer-Aided-Control-Engineering) en-

vironments and tools, e.g., MATRIXx, MATLAB and ICDM (Interactive Control

Design Module) in MATRIXx, place some severe restrictions on the user about the

multi-objective control system design, which are major obstacles to the wider appli-

cation of advanced control systems. In particular:

current tools require the user to specify indirect controller constraints, e.g.,

weighting matrices or transfer functions ("design knobs"), and then check that

the closed-loop system satisfies the actual requirements, e.g., overshoot. This

approach requires many design iterations and considerable insight by the user.

current tools require the user to have an intimate knowledge of the control

design algorithms and the real-time controller hardware. As a result, a very

high level of expertise is often required to make effective use of the tools.

To eliminate these obstacles, a CACE environment has been implemented in this

project to meet the following objectives:

• The user is able to design controllers directly from closed-loop specifications.



The user interacts with the environment through a GUI (Graphical User In-
terface) that eliminates the needfor intimate knowledgeof optimization and
control designalgorithms.

The GUI capability exists to implement, interact, and modify the simulation
model on an automation and on-line basis during the numerical or real-time
simulation process.

In this new environment, the user's interaction stays at the level of design perfor-
mancespecifications. Design problemscan be posedand solved- and if necessary,
the controller can be tested through numerical simulation or implemented in real-
time - all without the userbeing overloadedby the details of the underlying toolbox
language,designand optimization algorithms, or hardware. The designenvironment
integrates the designphaseand the simulation phaseof a designcycle together, and
provides a complete and extensivetreatment for practical designproblems. In sum-
mary, with the new CACE tool, a larger class of design problems can be solved in a

more complete and extensive wag by a broader range of users t.

1.2 CODA: A New CACE Design Environment

The new CACE design environment is refered to as CODA, an acronym for Convex

Optimization based Design Approach. It can be utilized for both continuous-time

and discrete-time linear MIMO (multi-input-multi-output) system design. CODA is
based on two facts:

1. All stable closed-loop transfer functions can be expressed as an affine function

of a stable transfer function called the Youla parameter or the Q parameter;

2. many common design specifications are convex functions of the closed-loop

transfer functions, and hence are convex functions of the Q parameter.

The basic architecture of CODA is shown in Figure 1.1 where it can be observed

that the user interacts with CODA only through the GUI in both the design phase

and the simulation phase. The other functionalities such as preprocessing and opti-

mization are completely transparent to the user. The interaction of the design phase

with the simulation phase is clearly described in Figure 1.1.

The flow chart of a typical design cycle is shown in Figure 1.2 where the dashed

boxes indicate that the functionalities therein are totally transparent to the user.

The design features of CODA as providing a complete and progressive design

environment can be observed from Figure 1.1 and 1.2.

CODA is built upon ISI's existing CACE product line, i.e., Xmath, SystemBuild,

AutoCode, ISIM and RealSim. However, it should be clear from Figure 1.1 and 1.2,

but still important to mention, that CODA is not a mere rearrangement of existing
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Figure 1.1: Basic CODA architecture

CACE products. What makes CODA completely different than what was possible

before, are capabilities that:

reduce the user-load in translating design problems into various design-tool

specific inputs, by supporting a GUI which directly manipulates multiple closed-

loop specifications,

rapidly handle repetitive designs iterations for realistic problem sizes.

provide efficient optimization algorithms to find a controller design satisfying

all of the design specifications,

enable a seamless interaction with the numerical and the real-time simulation

environments (this also reduces the user-load in repetitive numerical and real-

time simulation setup and implementation tasks), by allowing the automated

implementation of the simulation model, and on-line data processing and con-

troller modification during simulation.
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The report is outlined in the next section along with a brief description about the

functionalities embedded in CODA.

1.3 Outline of Report

It can be observed from Figure 1.1 that CODA consists of the following primary

functionalities:

1. Preprocessing scheme

2. Optimization algorithms

3. On-line numerical and real-time simulations

4. GUI

The preprocessing scheme as well as the design approaches and principles of CODA

are introduced in Section 2, which include

• Q parametrization for the controller;

• design specifications available in CODA;



• approximation of the Q parameter by a finite-series expansion to reduce the

infinite dimensional design problem to a tractable finite dimensional one;

• preprocessing scheme to transform the design specifications into a mathematical

convex programming problem.

The optimization algorithms used to solve the mathematical convex programming

problems derived from the design specifications are introduced in Section 3, which
include

• a descent method based on the non-differentiable optimization theory;

• a barrier-function method which is inspired from the interior-point methods

developed recently;

• a hybrid method which uses the descent and the barrier function method alter-

nately in the optimization process.

The optimization algorithms play the role as the 'engine' of CODA without which no

design solutions will be produced.

CODA can interact with the ISIM (Interactive SIMulation) module and the Real-

Sim (Reattime Simulaton) processor by implementing simulation models and updating

designs on an automation and on-line basis via two newly developed functionalities in

Xmath: RVE (Run-time Variable Editor) and SBA (SystemBuild Access). The RVE

allows the user to change %Variables 1 during an ISIM or RealSim process. The SBA

feature provides an Xmath interface into the SystemBuild database, which allows the

user to create, modify, query, and delete SystemBuild diagrams. In Section 4, these

two functionalities are applied for the interaction of CODA with the ISIM module

and the RealSim processor: The SBA feature is applied to implement the simulation

model in an automated way, while the RVE is used to update the controller model

during the numerical and the real-time simulations. A UCI (User Callable Interface)

functionality is also introduced, which is implemented as a UCB (User-Code Block)

in SystemBuild. It is used to copy the ISIM results into Xmath and then plot them

on the interactive function windows to monitor the ISIM process in an effective way.

Similarly, for the real-time simulation case, the outputs of a hardware plant can be

transmitted via an ACSOCK ('AC-100 SOCKet' which accesses the TCP/IP commu-

nication interface in AC-100 communication (CO) processor) to an LNX (pronounced

as 'links') facility through which the data can be copied into Xmath and plotted on

the function windows to monitor the real-time simulation process 2. With these fea-

tures built in, CODA becomes a CACE environment integrating the multi-objective

control system design, implementation of controllers, and simulations together.

l%Variables are selected parameters in SystemBuild intrinsic blocks, whose values can be ad-
justed at simulation time.

_As of May 1996, this part remains to be finished.

5



In Section 5, the GUI facility of CODA is introduced. CODA provides a thorough

treatment for multi-objective designs and on-line simulations for the testing of designs,

and hence is a very sophisticated CACE design tool. However, its GU[ is structured

and designed in such a user-friendly way that

• the user's interaction basically stays at the level of design performance specifi-

cations;

• with a clear and systematic layout of the CODA main window, and its easy-to-

use help system, even the first-time user can learn how to use CODA for design

in a minimal time.

1.4 Current ISI CACE Environment

As mentioned before, CODA is built upon ISI's existing CACE product line including

Xmath, SystemBuild, AutoCode, ISIM and RealSim. In this section, we give a brief

description on ISI's existing CACE design environment.

Xmath is an interactive mathematical analysis and scripting environment, which

is written in C++ and is an object-oriented numerical computing tool. It contains

a fully programmable GUI design environment which allows windows to be created

and manipulated using only Xmath source code (MathScript). Xmath also includes

the newly developed functionalities of RVE (Run-time Variable Editor) and SBA

(SystemBuild Access) which can be performed within MathScripts via a collection of
Xmath commands.

SystemBuild is a model editor and simulator which uses a block diagram GUI to

construct linear or nonlinear dynamical systems. The block diagram description is

automatically compiled into efficient code for simulation or real-time control purposes.

An ISIM process can be invoked in the Xmath command area or within MathScripts

to allow the user to change the %Variables in the various blocks of SystemBuild.

The RealSim processor provides automated development of real-time systems from

a user supplied block diagram of the controller written in the SystemBuild language.

It uses one of the serial processors of 80386, 80486 and 80860, and has animated

panels to monitor real-time operation as well some capability for configurable interface

design. A PC based version, the RealSim Model C30/C40, is also available and

supports a wide variety of PC and TMS320C30/TMS320C40 TI DSP and I/O boards.

The key to the RealSim processor and other real-time applications is ISI's Au-

toCode which automatically generates C, ADA, or FORTRAN code which can be

used on the host or any other processor. The code is generated directly from the Sys-

temBuild block diagrams created by the user. AutoCode is essentially a source code

generator that bridges the gap between design and implementation by generating the

downloadable code directly from the design database.



2 Design Approaches and Preprocessing Scheme

2.1 4-Block Plant Design Model

As mentioned in Section 1.1, a multi-objective controller design imposes many design

requirements such as

• stability

• robustness against unmodeled sector-bounded perturbations

• minimum and maximum bandwidth for the controlled system

• specifications of the rise time and settling time for the step response

• maximum instantaneous amplitudes for each of the plant inputs

• maximum RMS (root-mean-square) levels to noise inputs

and so on. Consider a linear (continuous or discrete) plant model P0. The first step

in a control design is to obtain the augmented plant P. The particular way the

augmentation is done depends on the design specifications at hand as well as the

adopted design scheme. The goal is to embed P0 in P so that the design specifications

can be expressed in terms of the closed-loop maps from w to z in Figure 2.1, where

W Z

Figure 2.1: Stable interconnection $(P, C)

C denotes a stabilizing controller, and the augmented plant P maps (w, u) to (z, y)

with that

• w is the vector of exogenous inputs, typically consisting of all references, dis-

turbances, and noise sources.

• z denotes the regulated outputs consisting of all the variables of interest for

design, e.g., states, sensor outputs, actuator inputs, error signals, and so on.

• the vector variables u and y are the actuator inputs and sensor outputs.



Let n_,, n., n,, and ny denote the dimensions of w, z, u and y respectively. It is

assumed that all of the undesired modes of P are stabilizable and detectable from

the input/output pair (u,y).

Stability is the most basic and important design requirement, and is usually not a

trivial design problem especially when the controller is restricted to a certain category,

e.g, fixed-order or PID controllers. However, no restrictions on the controller structure

are imposed in CODA except the possible requirement of strict properness. In this

case, it is known that the set of stabilizing controllers can be characterized by a

stable transfer matrix which is usually called Youla parameter and denoted by Q [15].

Thus the problem of designing a suitable controller is equivalent to that of finding a

suitable Youla parameter Q. By parametrizing the stabilizing controller in terms of

the Youla parameter Q, the transfer function from w to z in Figure 2.1 will be affine

in Q (see (2.4)). Furthermore, the design requirements in CODA are expressible by

convex functions of the closed-loop map from w to z (see Section 2.4). The controller

synthesis problem then can be transcribed to a convex optimization problem.

The Q parametrization design approach is adopted in CODA. The detail about Q

parametrization and related design approaches will be given in the following sections.

2.2 Q (Youla) parametrization

Using possibly a subset of w, z and y, design a full-order estimated-state feedback

controller C : y _ u, such that the interconnection ,S(P,C) (see Figure 2.1) is

stable. This nominal design is used to obtain a parametrization of all stabilizing

controllers. The required information is a state-feedback and an output-injection

gains. The method of obtaining these gains is immaterial for parametrization; e.g.,

for scalar u to y maps, one might even use pole-placement. However, from the design

point of view, it is advisable to choose the nominal design to meet a subset of the

performance specifications for which closed form solutions are available. Let the map

from u to y have a state-space description of the form (A,B_,,C_,Dy,,). Since the

pairs (A, B_,) and (A, C_,) are stabilizable and detectable, respectively, there exist

a state-feedback gain K and an output-injection gain L such that (A - Buff) and

(A - LCu) are stable. Typically, these gains are obtained by solving Riccati equations

formulating _2-optimal or _-suboptimal designs.

Once such K and L are determined, one obtains a nominal stabilizing controller

C(0) : y _ u, with the state-space description (A- BuK- LCy + LDy,,K, L, -K, 0).

The set of all stabilizing controllers from y to u can be expressed in terms of a stable

parameter Q, where C(Q) is obtained by the interconnection in Figure 2.2. The map

Z from (Y, v) to (u, e) in Figure 2.2 has the following system matrix description3:



V

Figure 2.2: All stabilizing controllers C(Q) • V --* u

(A - B_,K - LCy + LD_,,K) L (B_, - LDu_,)

-K 0 I (2.1)

(Dv,,K - Cy) I -D_,

Note that v and e have the same dimensions as u and y respectively. For the descrip-

tion above, C(. ) : Q _ C(Q), is one-to-one and onto stabilizing controllers. That

is, given any stabilizing controller C from y to u, there exists a unique stable transfer

function Q such that C(Q)= C.

With the controller structure given in Figure 2.2, the closed-loop diagram is shown

in Figure 2.3. The nominal closed-loop map (with Q = 0) from (w, v) to (z, e) can

W Z

U

Figure 2.3: All achievable closed-loop maps

be expressed by

[z] 0
3[ denotesthedyoam,c ,,s,,stemw,th

where

z = Ax + Bu,

y = Cx + Du,

dz
= -- for continuous-time case,

dr'

= x(l + 1), for discrete-time case.

(2.2)



i.e., the map from v to e is zero. The transfer functions T,_, T_ and T,_ in (2.2) are

determined by the plant model P and the gains K and L. Define

r_=[ T_'_

Figure 2.3 is then equivalent to Figure 2.4.

W

0 • (2.3)

It is straightforward to show that the

z

Figure 2.4: A simpler model for all achievable closed-loop maps H_(Q)

closed-loop map H_(Q) is equal to

H_,o(Q) = T_ + Tz. QT_,_, (2.4)

which is affine in Q.

In summary, the Q-parametrization design approach consists of two design steps:

1. nominal design

2. Q-parameter design

The nominal design is determined by the state-feedback gain (K) and the output-

injection gain (L), and uniquely defines the transfer functions (T_., T_, T_,) given

in (2.3) by which the set of all closed-loop stable transfer functions is expressed in

(2.4) with Q(.) being a stable transfer function. It is clear from (2.4) that Tz_ is the

nominal closed-loop transfer function. Intuitively, a nominal design meeting as much

as the design requirements is desirable because it is believed that a 'good' nominal

design will make the Q-parameter design easier from the numerical point of view, even

though, given any nominal design, theoretically we can always find a Q-parameter

to achieve the desired closed-loop transfer function. However, CODA emphasizes

the Q-parameter design, even though several options are indeed provided for the

nominal controller design in CODA (see Section 5.2.3). The user is referred to ICDM

(Interactive Control Design Module) in MATRIXxfor a more extensive treatment of

the nominal design.

Since the Q parameter belongs to the set of stable matrices which has an infi-

nite dimension, the controller synthesis problem with various design requirements ex-

pressed in terms of the closed-loop maps in (2.4) will result in an infinite-dimensional
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programming problem. A practical approachto solving the infinite-dimensional pro-
gramming problem is to approximatethe designproblemby a finite-dimensionalone.
In the next section, two setsof orthonormal basisfunctions for the Q parameter are

introduced, from which finite-dimensional design problems can be derived.

2.3 Finite-Dimensional Expansion for Q parameter

To transform the general controller synthesis problem with the Q parametrization ap-

proach into a finite-dimensional programming problem, the following approximation

expansion for the Q parameter is introduced:

r_q

Q(p,C) = __, Qk(p)&((), (2.5)

J r_q

where ( = s or z, nq is the order of expansion, {dk(_,)}k=0 denotes the set of expan-

sion basis functions, and p is the design parameter consisting of the elements of the
fLqcoefficient matrices {Qk}k=0. Let np be the dimension of the design parameter p. It

follows from (2.5) that

np = (nq + 1)-n_.n_ .

In the Q expansion of (2.5), the variable symbol '-' in dk(.) and Q(p, .) denotes 's', the

Laplace parameter, for the continuous-time case, and 'z', the z-transform parameter,

for the discrete-time case. It is clear that, given a nominal controller and a set of

basis functions, the larger is nq, the bigger is the dimension of the design parameter,

and the closer is the sub-optimal solution to the optimal one.

There are many choices for the expansion basis functions {dk(.)}. For example,

in [1], dk(-)is chosen to be

&(z) = z -k k>O,

for the discrete-time system such that the Q parameter is approximated by an FIR

(finite-impulse-response) transfer matrix. However, the set of basis functions {z -k}

does not have the desired property of orthonormality. In CODA, the Laguerre and

the Kautz functions are adopted as two sets of orthonormal basis functions for the Q

expansion [13, 14], which are defined as follows:

• Laguerre Functions

Continuous-Time Case:

,

where a > 0.

k _> 1, (2.6)

11



Discrete-Time Case:

dk(z) =

where-1 <a< 1

• Kautz Functions

Continuous-Time Case:

.... , k_>l,
--a k z--a /

d2k-l(s) - s_+bs+ c --fi_bs+

d_k(s) -- s2+bs+ c -_-+bs+

whereb>0, c>0, and k= 1, 2, ....

Discrete-Time Case:

x/-f -d(z-b) (-cz2__+b_(c_ -- 1)z + 1)d_k_,(z) = z2+_-c=]__c \ z'+b(c- 1)z--c

V/(1 - d)(1 -b2) (-cz 2 +b(c- 1)z + 1)

where-1 < b< 1, -1 <c< 1, and k= 1, 2, ..-.

k-1

k-1

(2.7)

(2.8)

(2.9)

It is obvious that the Laguerre functions are characterized by a real pole while the

Kautz functions are by a pair of complex poles. For the static part of expansion, we
choose

d0(.) = 1.

If the controller is chosen to be strictly proper, the static part of the Q parameter

has to be a zero matrix. In this case, we set

QO _ O,

where 0 denotes an n_ x ny zero matrix. The dimension of the design parameter, np,
then becomes

_p _ nq • _u • _y ,

2.4 Design Specifications

In CODA, design specifications can be imposed on the following functions or re-

sponses:

12



_2 (RMS) functions on which upper boundsare assignedto, e.g., set up the maxi-
mum RMS levels to disturbance/noise inputs.

Step responses on which upper and lower bounds are specified to put constraints on

rising times, settling times, overshoot, asymptotic values, etc.

Impulse responses on which upper and lower bounds are assigned to impose con-

straints on the amplitudes of an impulse response, e.g., from a reference input

to a sensor output.

MSV (maximum-singular-value) responses in frequency domain, on which upper

bounds are specified to put constraints on gains, bandwidths and rolling rates

to achieve the design goals like robustness to unmodeled perturbations, distur-

bance/noise rejections, bandwidth assignments, etc.

Beside the design specifications on the above 4 types of functions and responses, the

tracking requirement among selected input-output pairs is very common in control

system design. Therefore:

Integral actions can be imposed on the selected input-output pairs so that the

outputs will achieve the asymptotic values assigned by the user for the step

inputs, i.e., zero steady-state errors are guaranteed.

2.5 Problem Formulation

With the Q parameter approximated by a finite-dimensional expansion as shown in

(2.5), each of the design requirements considered in Section 2.4 can be formulated by
a convex function.

2.5.1 "H2 Design Function

The 7_2 or RMS function, F(p), for a given input-output pair (wx, z,) with wl C w

and zl C z, is defined to be

F2(p) (/o..= 2. tr zlwl (P, jf)Hz, _, (p, , for continuous-time case

(2.10)

)= 277o. tr r_o Hz, wl(p, e32,rTo.t)H_lw1(p,e.i2,rTol)df ,

for discrete-time case,

where tr(M) denotes the trace (the sum of diagonal elements) of the matrix M, To is

the period of the discrete-time system, H" denotes the complex conjugate transpose

13



of a complex matrix H, and

Hz, w_(p,') =

rl, q

Tzl_l(.) + _ dk(.)T_,v(')Qk(p)T_,_('). (2.11)
k=O

It is clear from (2.10) that the 7-/2 function F(.) can be expressed by

?F(p) = _pTHp + pT9 + fO, (2.12)

where H is a non-negative definite Hessian matrix, g is a gradient vector and f0 is a
function. The RMS constraintscalar. Suppose bl > 0 is the upper bound for the _

can then be expressed by

F(p) <_ bl.

Define the 7"t2 design function O(') to be

(p(p) _= F(p) - bl

= IIpTHp

(2.13)

+ pTg + fo -- b,, (2.14)

which is the deviation of the RMS value F(p) from the upper bound ba. Since F(.)

is a convex function, so is ¢(.). Equation (2.13) is then equivalent to

¢(p) <_ 0. (2.15)

2.5.2 Step/Impulse Design Functions

Consider a step or impulse response from the input w_ E w to the output z2 E z.

Referring to (2.4) and (2.5), the closed-loop transfer function from w2 to z_ is equal

to
nq

Hz_2(P, ") = T_2_2(') + _ dk(')T_2v(')Qk(p)T_,_2('). (2.16)
k=O

It is straightforward to show that each step or impulse responses corresponding to n,

equally spaced sampling points can be represented by

A.p+b, (2.17)

where A is an n8 x np matrix, and b is an ns x 1 vector. Let b and b, which are n8 x 1

vectors, denote the upper and the lower bounds respectively for the response. The

design requirements for step and impulse responses can be formulated by

k_A.p+bNb, (2.18)

which is equivalent to
b-bb] 0 ,219,
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Define

= - ' = _b b "

9Equation (..19) can then be rewritten as

A . p + b <_ O, (2.20)

Define the step or impulse design function, ¢(p), to be

¢(p) _ max(Ap+b), (2.21)

which is equal to the maximum deviation of the response to the bounds. It is easy to

show that ¢(.) defined in (2.21) is a convex function. Clearly (2.19) is equivalent to

0(p) _< 0. (2.22)

2.5.3 MSV Design Function

Consider an MSV response from the input w3 C w to the output z3 C z with the

closed-loop transfer function:

rLq

H,3_o3(p,.) = Tz3_o3(.) + __d_(.)Tz3_(.)Qdp)T._3(.). (2.23)
k=O

The MSV response, h(p, f), is defined to be

h(p,f) j2rcf)ll, for continuous-timecase,

a= d2.zol)ll, for discrete-timecase,

where To is the period of the discrete-time system, and [[H[[ denotes the induced

2-norm of the complex matrix H. It is known that [[nl[ is equal to the maximum

singular value of H. Since H,_(p,.) is affine in p, it is straightforward to show

that h(p, f) is a convex function of p. Suppose b(.) is the upper bound for the MSV

response, and fl z_ {fi}i_] denotes the frequency sampling points. The MSV

constraints can then be expressed by

h(p, f) - b(f) < 0 V f E ft. (2.24)

Define the convex MSV design function, ¢(p), to be

max h(p, f) -
yen

(2.25)

which is equal to the maximum deviation of the MSV response to the upper bound

b(.). Equation (2.24) is then equivalent to

¢(p) < O. (2.26)
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2.5.4 Integral-Action Requirements

Suppose integral action is required from w0 to z0 with w0 C w, z0 C z and

dim(wo) = dim(zo) = no.

It will impose the following linear equality constraints on the design parameter p:

r_q

Logo(0) + Z dk(O)LodO)Qk(p)T  o(O)
k=O

r_q

T_o_oo(1) + _ dk(1)T_o.(1)Qk(P)T_,_o(1)
k=O

= diag('yl, "t2, -.. ,_t,_o), (2.27)

for continuous-timecase

= diag(71, 72 ..... 7,_o), (2.28)

for discrete-timecase

where 7i, 1 < i < no, is the desired asymptotic value of the step response for the i-th

tracking pair. It is clear that (2.27) and (2.28) impose linear inequality constraints

on the design parameter p. Hence the design parameter p can be expressed by

p = Ao[_ + bo, (2.29)

where A0 is an np x n_ matrix and b0 is an np x 1 vector with n_ _< rip. Suppose

there exist no poles nor zeros at s = 0 (for the continuous-time case) or z = 1 (for

the discrete-time case) in the plant model for each tracking channel. In this case, we

have

n_ _ _p- n02.

which implies that the dimension of the design parameter np should be larger than

no_ in this case.

2.5.5 Conclusion

In summary, with the design specifications considered in Section 2.4 and the Q param-

eter approximated by (2.5), the design problem can be transformed into the following

convex feasibility programming problem:

{ ¢1(p) <0
¢2(p) <_ 0 (2.30)OP:

era(p) < 0

where rn is the total number of design requirements, and each ¢i, 1 _< i <_ rn, is in

the form of (2.15), (2.20) or (2.26). If there exist tracking requirements, the design

parameter space will be reduced from p to i5 according to (2.29). Since there exists

an affine relationship between p and i5, the feasibility programming problem (2.30)

remains to be a convex one.
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A nice property about the convex feasibility problem in (2.30) is that the set of

feasible solutions is either an empty or a convex set. That is, if pl and p2 are two

solution points of the problem (OP), a convex combination

Apl +(1 - A)p_ with 0 _< A < 1,

is also a feasible solution due to the fact that each ¢i('), 1 <_ i _< m, is a convex

function and, therefore

¢,(Ap, + (1 -  )p2 ) <_ A¢,(p,) + (1 - a)O,(p2)
< O.

Another nice property about the convex programming problem is that the local

minima problems do not exist.

2.6 Preprocessing Scheme

With a given nominal design, the preprocessing scheme in CODA is used to acquire

the following data set for any Q expansion:

• (H, g, f0) for the 7i2 function (see (2.12));

• (A, b) for the step or impulse response (see (2.17));

• the frequency responses of (rz3m('), Tz_.('), r,_3(-)) and {dk(-)}_'_, for the MSV

response (see (2.23));

• (Ao, b0) for the integral-action constraint (see (2.29)).

These data sets are needed in finding a feasible solution for the programming problem

(oP).

The acquisition of the frequency responses for the MSV response and (A0, bo) for

the integral-action constraint from (2.27) or (2.28) is pretty straightforward. There-

fore, we will focus on the preprocessing methodologies for the _2 function and the

step/impulse response in this section.

In the implementation of the preprocessing scheme, we should take account of

the fact that the preprocessing scheme is invoked each time the user changes the Q

expansion. Therefore it should be kept in mind that the preprocessing scheme to be

implemented be efficient for frequent preprocessing calls.

Note that the definitions and notations given in Section 2.5 will be borrowed here.
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2.6.1 Preprocessing for 7-¢2Function

The preprocessingschemefor the "H_ function is aimed at obtaining the data set

(H, 9, f0) in (2.12). An exact state-space-based approach requires solving (np + 2)

Riccati equations, which takes so much CPU time for the design problem with a

reasonable plant order (say, > 30) and parameter dimension (say, _> 40), that it

becomes unacceptable [9]. Therefore an approximation preprocessing is adopted for

the _2 function in CODA. Let's consider the continuous-time case first.

Let pi denote the (ai, fli)-th element of Qk with 1 _< ai <_ m,, 1 < 3i <_ n u and

0 < k < nq. Note that (2.11) can be rewritten as

where

rLp

Hzl_l(s) = To(s) + __, Ti(s)pi, (2.31)
i=1

To(.)
and

= ""_' T'_w_(s).dk(s).T,(8) T'_,,_ (s) " _''"

Note that T_;%'(.) is the ai-th column of T_lv(.), and Tz'"(.) is the 13i-th row of Te_, (').eW 1 \

From the definition of the 7-/2-norm (see (2.10)), we have

----/_.2(p) = 2.tr

= 1-[42
np

4E
i=l

(/5y_ Re tr(T_(j2rf)Tk(j2rf))pipk +
i=1 k=l

(/J )Re tr(To(j2_rf)T_(j2_rf))p,d f +

(fo_ To (j2rc f)To(j27r f) df )

real part of the complex argument. Therefore we have

(2.32)

2. tr

where Re(-) denotes the

(/J )fo = 2. tr To(j2rf)To(j27rf)df , (2.33)

(/J )9, = 4. Re tr(To(j2rf)T_(j2rf))d f , (2.34)

(/o )h,k = 4. Re tr(T/'(j2rf)Tk(j2_rf))df , (2.35)

where gi and h_k are, respectively, the i-th and the (i, k)-th element of g and H with

1 < i, k < np. To have an efficient evaluation of fo, g and H for various Q expansions,

let M0 be a set of (n_.nu) indexs such that {Pi}ieMo is the set of elements of Q0 in

(2.5). Corresponding to each p,,, with m E M0, let Gin(') be defined by

Gin(f) =a tr(To(j2rf)Tm(j2rf) ) = tr(To(j2rf) • Tz_È''_'()2_rf) ." _'' "

= T[_"(j2rf) To(j2_rf) T_'_'(j2rcf). (2.36)
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Similarly, let H,_m2(') with ml C M0 and rn2 E Mo be defined by

Hm_m2(f) _ tr(Tm,(j27rf)T,_(j27rf) ) (2.37)

_,,((T'"_'l(32rf))zl,, T_I,, (j27rf))(T_2 (j2_f)(T_l"(j2_rf))*)

Suppose pi is the ((_i, _3i)-th element of Qk,. Let pro,, with rni E Mo, be the (vq, _i)-th

element of Qo. Equation (2.34) can be rewritten as

g; = 4. Re(f0 °¢ Gm,(f)dk,(j27rf)df). (2.38)

Suppose pj is the (aj,/3j)-th element of Qk_. Let pr,,,, with my C Mo, be the (aj, 3j)-th

element of Qo. It is straightforward to shown that (2.35) is equal to

(/2 )hij = 4. Re Hm,m_(f)d'k,(j27rf)dk_(j27rf)d f . (2.39)

Once {G_(')},-,eMo, (T_*,,(.)TzI,(.)), and (T_(.)T_,(.)) T be determined and stored

in the data stack, the evaluation of g and H via (2.37), (2.38) and (2.39) will become

very efficient.

The discrete-time case is similar to the continuous-time case. Substituting (2.31)

into (2.10), we get

fo = 2To.tr(fo2-%-° To(eJ2"_T°/)To(eJ2'_T°l)df), (2.40)

9,= 4To-Re(fo2-_-° tr(To(eJ2_T°/)Ti(eJ2_T°/))df ) , (2.41)

hij= 4To. Re(fo_-_° tr(T_'(eJ_'T°/)Tj(eJ2_T°/))df). (2.42)

The evaluation of fo, g and H for the continuous-time case can then be applied for the

discrete-time case with (j2rrf) replaced by (e j2_T°I) and the integral range changed

from [0, c_) to [0, 2-_o]"

The preprocessing scheme discussed in this section is just an approximation be-

cause a finite sum is used to approximate the integrals in (2.38) and (2.39).

2.6.2 Preprocessing for Step/Impulse Responses

Consider the time (step or impulse) response for the closed-loop map from w2 C w to

z2 E z with the transfer function given in (2.16) which are repeated here:

nq

H_o2(p,') = T_(.) + y_ dk(.)T_(.)Qk(p)T_o_(.).
k=0
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The preprocessing for the time response is to find the matrix A and the vector b such

that the step or impulse response can be evaluated by (see (2.17)):

A.p+b.

It is clear that the vector b is equal to the time response of the transfer function

Let,
A

= ... Pnq] ,

with

zx [p_k)p_k) _(k)Pk = .'. Pnuxn_] T,

denoting the design parameter which consists of the elements of Q_. Let A be de-

composed by

A =a [Ao A, ... A,_,],

where each Ak, 0 __<k _< nq, is an n, x (n,, • nu) matrix. Clearly, each column vector

of Ak is determined by the time response of an associated element function of

d_(.) (Tz2v(.) T. T_,,,2(.)T) . (2.43)

In particular, the matrix Ao is determined by the time response of the n,, x n u transfer

matrix T(.) defined by

_(.) a= T,_(.)T. T_,_(.)T. (2.44)

Suppose T_v(.) and T_,2(. ) have the state-space realizations of

At AtCz_ t B_ De,_ ]'

respectively. The transfer function T(.) in (2.44) then can be realized by

.7t .B kC_ B_ _ _C_aD,,,,aJ . (2.45)

a b = [DT B T i DT D[o 2

There exists a simple, and yet efficient, way to evaluate the matrix A for the

discrete-time case. Referring to Section 2.3, it is straightforward to show that

dk(z ) = (l__z -- (l ]=Y'z),dk_l(Z) '

for the Laguerre expansion, and

d (z) =

k > 1, (2.46)

+_
z 2+b(c-1)z-c ] "dk-2(z)' k>2,

(2.47)
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for the Kautz expansion. Therefore, we havethe following recursiveequations: for
the caseof Laguerre expansion,

k>2;

(2.48)

for the case of Kautz expansion,

( ,/i-- b) ) * Ao,

ax = z2 +_c75-1__e

,42 = _(c_l)z_c} *Ao, (2.49)

-cz + b( c- 1)z + 1)ak = -_ + b_-- -1)z------e * a__2, k >_ 3 ;

where '.' denotes the convolution operator. Equations (2.48) and (2.49) mean that

the i-th column of Ak can be obtained by convolving the i-th column of (i) Ak-1 with

a lst-order dynamics for the case that Laguerre expansion is used, or (ii) A_-2 with

a 2nd-order system for the case of Kautz expansion. Therefore the update of A due

to the change of poles and/or order of the Q-expansion can be accomplished by the

convolution of the current data of A with a 1st or 2nd order system, which makes the

preprocessing for the step/impulse responses of discrete-time systems very efficient.

The preprocessiag scheme for the continuous-time system is more complicated and

has to go back to (2.43). Let

or

Q(s) = [do(s)I% d,(s)I,_ d2(s)I,_ ... d,_,(s)In,], if n_ _> n_,

do(s)I,,°
dl(s)I,,,

if nu < ny,

where IT, denotes the identity matrix with order rn. It follows from (2.43) that the

matrix A can be obtained by evaluating the time (step or impulse) responses of the

systems shown in Figures 2.5 and 2.6, where the dimensions of fix, ?)a, fi2 and _)2 are

(nq + 1)ny, n,,, nu and (nq + 1)n= respectively. Suppose Q(.) is represented by the

state-space realization

Aq Bq
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Figure 2.5: The preprocessingmodel for continuoustime responseswith n_,> nv

1

a2 t f(*) ----" Q(')

Figure 2.6: The preprocessing model for continuous time responses with n,, < n u

It follows from (2.45) that the cascade systems in Figure 2.5 and Figure 2.6 can be

described by

A_ ] , (2.50)
DCq] DDq

and

Bqb , (2.51/
[DqC DqD

respectively.

The preprocessing scheme based on Figures 2.5 and 2.6 and, hence, (2.50) and

(2.51) can be simplified if T(.) and _)(.) do not have common poles. For this case,

consider the state transformation matrices

0 I.,, T2 I.,,

relating the new state coordinate to the old state coordinate for the systems in (2.50)

and (2.51) respectively, with T1 and T_ satisfying

AT1 - T1Aq "- -BCq, (2.52)

and

aqT2 - :1"2,2t = - BqC. (2.53)

Note that no and nsq are respectively the orders of systems 2_(.) and Q(.), and T1

and T2 are no x nsq and nsq x no matrices respectively. The systems in (2.50) and

(2.51) are then equivalent to

(AOAq) (bSqB?lBq) , (2.54)

[C aT,+DC,] DD,
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and

[ t ]- rj_ + Bqb ) , (2.55)

+c,r cq] vqb
respectively. We can evaluate and store the time (step or impulse) responses of

A
0],

denoted by Y_(.), for the system in (2.54), and the time responses of

A /)[,.0i0]
denoted by Y2('), for the system in (2.55). The time responses of the system in (2.54)

is then equal to

Aq

Y,.([3Dq-T,B,) + Resp([ CT,+DC,[ BqDD, ])' (2.56)

and the time responses of the system in (2.55) is equal to

Aq
(DqC +CqT2). Y2 + Resp ([ cq t-Tj_+BqD°DqDo ])' (2.57)

where Resp(S) indicates the time response of a system S.

2.6.3 Special Case with Zero K and L

Suppose the plant model is stable, and the state feedback gain (K) and the output

injection gain (L) are chosen to be zeros. In this special case, the preproeessing for

all of the functions and responses can be simplified due to the fact that Tz_o('), Tzv(')

and Te_(') in (2.3) are reduced to

T,_(.) -_ p,_(.), Tzv(.)-_ Pz_(.), Te_(.)-_ P_(.),

where Pzw('), P_,(') and Puw(') are the open-loop transfer functions of the 4-block

plant model P in Figure 2.1 from w to z, u to z, and w to y, respectively. Note that the

order of the system (Pzw ('), P_,, ('), Pu_ (')) is only a half of that of (T_,_ (.), Tz_('), T_ (.)).

2.6.4 Conclusion

The design process in CODA may involve various Q expansions, and the dimension of

design parameter space can be very large. The preprocessing methodologies studied

in Section 2.6.2 has taken account of this fact and proved by numerical simulations

that it results in a very efficient preprocessing scheme for CODA. The preprocessing
scheme will be invoked each time whenever
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• a new designspecificationis defined;

• the sampling points of step/impulseor MSV responseschange.

The preprocessingschemewill also be invoked for the designspecificationsalready
defined if

• a new nominal controller is adopted:

• a new Q expansion is used.

After the preprocessing is done, the existing design requirements should have been

transformed into the optimization problem (OP) in (2.30) which is ready for the user

to invoke the optimization solvers in CODA to find a feasible solution.
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3 Optimization Algorithms

3.1 Introduction

As a summary of Section 2, the control system design problem considered in CODA

can be transformed into a convex feasibility programming problem (see (2.30)):

{ ¢1(p) <0

OP • ¢_(P) -_ 0

era(p) _<0

where m is the total number of design requirements, and each @, 1 __ i _( m, is a

convex function and in either form of (see Section 2.5 for definitions of notations)

• V/½pTHp + pT9 + fo -- bl, for 7_2(RMS) constraints;

• max ([(Ap + b -/_)r, (_b- Ap - b)r]), for step/impulse constraints;

• max(h(p,f)- b(fi)) for MSV constraints.
f, E_

If there exist tracking requirements, a new design parameter space _5 will be derived

from the old one p by

p = Ao_fi+ b0,

where A0 is an np x n_ matrix and b0 is an np x 1 vector with n¢ < np. Clearly,

¢i(/_) _= ¢;(A0_5 + b0) 1 < i < m,

is also a convex function. Therefore the resulting optimization problem remains in

the form of (OP)in (2.30).

Define the maximum design function ¢(.) to be

¢(p) A= max Ck(P). (3.1)
l<k<m

Clearly, if _ is a feasible solution, we have

¢(p) < 0.

Therefore, ¢(-) can be viewed as the objective function in CODA.

The following two optimization approaches are used in CODA to solve the opti-

mization problem (OP):

• descent-direction method
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• barrier-function method

Strictly speaking, these two methods fall into the category of the so-called method of

centers [7]. Both utilize the following conceptual algorithm:

A Conceptual Algorithm

Data: An initial design point p0 E IR _".

Step 0: Set k = 0.

Step 1: If _(Pk) < 0, stop.

Step 2: Find a search direction hk.

Step 3: Solve the line search problem:

Step 4: Let pk+a = Pk + _hk. Replace k by k + 1 and go to Step 1.

Step 3 of solving the line search problem is implemented according to the Golden

Section method [4, 10] in CODA. It is clear that Step 2 of finding a search direction

plays the key role in the conceptual algorithm. The descent-direction and the barrier-

function methods differ from each other mainly in the implementation of step 2.

In the descent-direction algorithm, the search direction /z is found by applying the

nonsmooth analysis results [3, 11] so that

]z = arg max ¢(p) - q (p+ h) (3.2)
a IIh]l

In the barrier-function method, a standard convex logarithmic barrier function is used

(see Section 3.3), and the center is defined to be the point minimizing the barrier func-

tion. The search direction is then chosen to be the vector from the current point to

the center. It is clear from (3.2) that the descent-direction method deals directly

with the objective function ¢(.) in the search direction finding problem, while the

search directions are found in the barrier-function method through the barrier func-

tion, which is not directly related to q)(.). On the other hand, the descent-direction

method only utilizes the local (lst-order) information of _(-), while the center in

the barrier-function method is a global optimal solution of the associated barrier

function, and usually provides more than 1st-order information about the objective

function ¢(.). Therefore, there exist trade-off performances between these two meth-

ods: the descent-direction method is more efficient in solving the problems with the

MSV constraints while the barrier-function method is usually more efficient in solv-

ing the linear (time-domain constraints) and quadratic (T/2 constraints) feasibility

problems especially when the number of design requirements becomes bigger. The
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barrier-function method usually takesmoreCPU time in eachiteration becausean-
other optimization cycle is invoked to find the center point, but may make a more
significant move toward a feasiblesolution.

Becauseof the trade-off behaviorsbetweenthe descent-directionand the barrier-
function methods,

• a hybrid method

of these two approachesis implemented to share the advantagesof both descent-
direction and barrier-function methods.

The detail of thesealgorithms is introduced in the next sections.Again the nota-
tions in Section2.5 are borrowedhere.

3.2 Descent-Direction Method

To find a search direction for _(.), define the ACDF (Augmented Convergent Direc-

tion Finding) map [11] by

G(p) _ m= co (U,_-ig.(P)), (3.3)

where co(.) denotes the convex hull of a set 4, and each gi(') is in the form of:

• for the RMS constraint -- g(.) : IR_p _ In, np+l with

¢(p)- ¢(p) )g(p) = _ •
_¢(p)

(3.4)

• for the time-domain constraint -- g(.) : lR '_p _ 2 rt"p÷l with

_(p) •1r - (ii p +/_)r )g(p) = ¢o /iT , (3.5)

where 1 is an (2ns) × 1 vector with all of the elements equal to 1. Note that

co(M) with M being a matrix indicates the convex hull of the column vectors
of M.

d n flaWe say gEco(G) withGclR m if3n > 0, { _}t=l cGand {#_}_=1 CIRwith/_ > 0, Vk

n 1 such thatand Pk = g -= pkdt. In short, co(G) is the smallest convex set in IRm
k=l k=l

containing G.
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• for the MSV constraint -- g(.) • IR'_p --_ 2 _t"p+_ with

co{(
where

W(p,f,u,v)

[ f E _, I_1_<_1, Ivl= _<t},
(3.6)

nq

Re (u'[_b,3_z(f) + y_ 3k(f)T_3.(f)Qk(p)7"_o3(f)]v) -- [_(f).
k=O

(3.7)

In (3.7), u and v are complex vectors with dimensions equal to those of w3 and

z3 respectively, u" denotes the complex conjugate transpose of u, and

T_3_(f) Lx _ Tz3,_3(j27rf),
= t Tz3_(_J_r°I),

for continuous--time case;

for discrete-time case.

Tz3v('), 7",_3(') and dk(.) are similarly defined from T_zv(.), T_o_(.) and d_(.)

respectively. With tP(.) defined in (3.7), we have

¢(p)

= max IIT_3_(f) + Y_ dk(f) T._(f)Ok(p)r_,_(f)ll - _,(f)
fEfl k=0

= max V(P, f, u, v).
f_fl

lul_ < 1

Ivl_ < 1

Note that _(-) is differentiable in the design parameter p (but ¢(-) is not).

A search direction can be found by finding a solution to minimize the following semi-

convex (quadratic) functions on the ACDF set G(.):

= -h(p) _ ¢ G(p)}, (3.S)

where (o and ho(.) are scalars, _ and h(.) are nv x 1 vectors, and Q is a positive-definite

matrix currently chosen to be an identity matrix. The vector h(.) is then a descent

direction for the objective function q_(.), which means that there exists a real number

/30 > 0 such that for any given positive number a < 1,

¢(p + _h) - ¢(p) < -_l]*l_, V0 < 3 </30.

The problem (3.8) can be solved in a very efficient way via the modified yon Hohen-

balkan algorithm [5, 6].

Some practical considerations on the implementation of the descent-direction al-

gorithm can be found in [12].
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3.3 Barrier-Function Method

Suppose the current design parameter is p0. Let

/x
c_ = ¢(po).

Define the barrier function B(.) to be

m

B(p) = __, B,_(p),
n=l

where each B,_(.) is in the form of:

(3.9)

• for the RMS constraint:

B,,(p) -ln(_- e(p)) =

= --ln(o--i_prH p

It is straightforward to obtain

d B,

dp

- ln(_ - F(p) + bl)

+ pTg + fo + bl). (3.1o)

and

d2Bn

@2 (P) =

__(p) = {(Hp+g)
(_ - ¢(p))F(p)' (3.11)

}H

(,_- ¢(p))p(p)
t(Hp+g)(Hp+g) r

+4
(,__ ¢(p))2F(p)_

1
_(Hp+g)(Hp+g) r

(a-¢(p))F(p) 3

(3.12)

• for the time-domain constraint:

straint in (2.20). Suppose

4

Consider the resulting linear inequality con-

bl

b2

b2"_,

where each al is an np x 1 vector, and bi is a scalar• Define the associated barrier
function to be

2as

B,_(p) _ -Co __ln(a - aTp- b,), (3.13)
i=I

where co is a weighting factor inversely proportional to the number of sampling

points n_. It follows from (3.13) that

dB,_ 2,, ai (3.14)V (p) = coE aTp b,'

and

d2 Bn 2n, aiaT

dp_ (p) = co_ ((__ _Tp_ b,)_ (3.1s)
i=l
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• for the MSV constraint: Without loss of generality, we assume that the MSV
constraint is in the form of

IITo(f) + TI(f)Q(p)T2(f)I[ - b(f) <_ O, V f E fl, (3.16)

where To(.), TI(.) and T2(-) are nl x n2, n_ × n3 and n4 x n2 complex matrices

respectively, and it implies that

Q(p) E 1R'_3×'_'.

If T is an nl x n_ complex matrix, recall that

IITll = max Re(u'Tv), (3.17)
I_1-<1
Ivl< 1

where u and c are, respectively, ntx 1 and n2 x 1 complex vectors, u* denotes the

complex conjugate transpose of the complex vector u, and Re(-) is the real part

of a complex argument. Let Rk(') and Sk(') denote the real and the imaginary

parts of the complex matrix Tk('), respectively, for k = 0, 1,2 such that

Tk(f) t_ Rk(f) + j Sk(f), k = 0,1,2.

Define

and

We have

Let

fl(p,f) a= Ro(f) + R,(f)Q(p)R2(f)- S,(f)Q(p)S2(f) (3.18)

S(p,f) _- So(f) + R,(f)Q(p)S2(f) + S,(f)Q(p)R2(f). (3.19)

To(f) + T_(f)Q(p)T2(f) = [_(p,f) + j S(p,f). (3.20)

Z(p,f) a [fl= _ -S]/_ . (3.21)

It is clear that Z(p, f) is affinely linear in p, and

Z(p,f) E IR (2'_')×(2'_2).

It follows from (3.17) and (3.20) that (3.16) is equivalent to

I[z(p, f)ll- _(f) _<o, V f E a, (3.22)

which can also be expressed in the standard form of the so-called linear matrix

inequalities [1]

[ b(f)I2,1 / 0, f E (3.23)
Z(p,f) ]

< V ft.
- Zr(p,f) b(f)I2,,2 j -
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For each fi E fl, define

Mi(p) /', [ (a+b(fi))I2,,1 Z(p, fi) ] (3.24)= ZT(p, fi) (a + b(.f,))I2,_2 "

Now we are ready to define the following barrier function for the MSV con-

straint:
nI

B.(p) A= -co _ ln[det(M,(p))], (3.25)
i=1

where co is the weighting factor which is inversely proportional to n f, the number

of frequency sampling points. It has been proved that the barrier function

defined in (3.25) is convex [8].

To find the center for the barrier function, we need the first-order and the

second-order derivatives of the barrier functions. For simplicity, we will study

the case for a single item of {-c01n[det(M/(p))]} in (3.25). Let

= -co ln[det(M(p))].

Note that we have dropped the index of i for simplicity.

(k_, k2)-th element of the parameter matrix Q(.). Then

_p (p) OM= --co.tr(M(p)-_-_pkpk(p) ).

It is clear that

OM

bE(p)

where

OZ [ Rlek,_T_ R2 - Slek,_ T $2

Suppose pk is the

(3.26)

0 _ (3.27)ozT

0 '

-T -T ]

- ($1 ek, %2 R_ + R, ek, % $2)

R,e , - ' (3.28)

with ek, (_%) denoting the kvth (k2-th) column basis vector of the na(n4)-

dimensional Euclidean vector space, i.e., all of the elements equal to 0 except the

k,-th (k2-th) one which is equal to 1. Note that 1 _< kl _< na and 1 _< k_ _< n4.

To evaluate M(p) -1, the following procedure is suggested: Let

M(p)_, A [ M, N ]= N T M_ "

T _ ((a + b(f))212,_ - zTz) -1, (3.29)

If n 1 _> n2, let

then

M2 - (a + [_(f)) . T,

N T = -T.Z T,

M, = (I_,_, - Z . NT)/(a + b(f));

(3.30)
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while if nx < n2, let

T _ ((a + b(f))212_, - ZZr) -1, (3.3a)

then

M1 = (a + b(f))-T,

N T = -ZT.T,

M, = (I_n2 - N T' Z)/(a + b(f)).

(3.32)

It follows from (3.26 - 3.32) that

Let

_pk(P) = --2co . tr( _p NT).

N T _ [ Nz

[ ,%

where each Nm E IR_1×'_ for 1 < rn < 4.

that

where

(3.33)

N4 '

It is then straightforward to show

0[3 (_2 0% ), (3.34)
Opk (p ) = -2co.

C = R2(Nx +Na)Rx-S2(Nt +N4)St+R2(N2-N3)St +S2(N2-Na)Rt. (3.35)

Therefore,

___pB(p) = -2c0. (CT)(:), (3.36)

where C(:) denotes the vector of which the dements come from those of the

matrix C column by column.

To evaluate the Hessian matrix for B(-), we start at

02[3 OM 10M

Op, Op------_(p)= Co . tr( M(p)-'-_pl (p)M(p )- -_pk (P) )

[OZ M OzT NTOZ T '_
= 2co.tr_pt ( 2-_pkMl+ _-_pN )). (3.37)

Define

[R1_11],3.38,U3 U4 = _i T nlT M1 I1 nl '

V3 1/4 = Is R2 M2 -I T R_ '

[ Nix3 x4X2] _= [n2Is -I2]NT[ R1R_It -It]Rt ' (3.40)
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wherethe dimensionsof U[s, 1 < i < 4, are the same, and so are the dimensions

of V{'s and the dimensions of X[s. It is straightforward to show from (3.37) that

Opk - -

where

-T

Nick 1 _T2Xl "-}- X2ckl _T2 x 3 -3 i- X3ekl ek2 X2 -31- X4ekl eT2x4 •

Since the barrier-function defined in (3.9) is a convex function, there exists a

global optimal point minimizing the barrier function, which is called the center of the

barrier function. Since the first-order and the second-order information of the barrier

functions are available, the Quasi-Newton method can be applied to find the center.

The search direction in the step 2 of the conceptual algorithm in Section 3.1 is then

equal to the vector from the current design point to the center.

3.4 A Hybrid Method

As mentioned in Section 3.1, there exist trade-off phenomena between the descent-

direction and the barrier-function algorithms. The barrier-function algorithm takes

more CPU time in each iteration because another optimization cycle is invoked to

find the center, but may make a more significant move to a feasible solution. On

the other hand, the search direction in the descent-direction algorithm is directly

related to the objective function defined in (3.1), and is more efficient, especially,

for the design problems with MSV constraints. To have the advantages of both

algorithms together, a hybrid algorithm is implemented in CODA where the descent-

direction and the barrier-function algorithms are applied alternately. Currently, an

iteration using the barrier-function algorithm will be followed by five iterations using

the descent-direction algorithm. It has been observed from practical design examples

that the hybrid algorithm is very efficient especially for the design problems with

MSV constraints and a significant number of step/impulse design requirements.
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4 Interaction with ISIM and RealSim

4.1 Introduction

Simulation provides a direct and practical way to validate a controller design. In

the MATRIXx CACE environment, two simulation facilities are available to test the

controllers obtained from CODA:

• ISIM (Interactive SIMulation) module allows the user to test the controller via

numerical simulation. The plant model given by the user in SystemBuild for

simulation can be linear, nonlinear or even time-varying system which may

be different from the linear time-invariant plant design model. To make the

simulation model as close as possible to the practical one, appropriate noise,

disturbance and/or plant uncertainty models should be included in the plant

simulation model. As a linear dynamic model, the controller can be most conve-

niently realized by a state-space block in SystemBuild. However, it can also be

realized by, e.g., a Block-Script block or a UCB (User-Code Block). The IA (In-

teractive Animation) icons can also be included to have interactively animated

inputs and graphically displayed outputs. Various integration algorithms like

Euler's method, Kutta-Merson methods, stiff-system solver, etc. are available

for simulation. The default integration algorithm is the variable-step Kutta-

Merson algorithm. The ISIM module can be invoked in Xmath by typing the

following command in the Xmath command area:

z = sim(rnodel, t, w, {interact});

where model is a string denoting the superblock name of the feedback system

model in SystemBuild, t denotes the time variable which is a column vector, w

indicates the external input variable and is a matrix of which the ith column

corresponds the ith input, and z denotes the output variable which is a PDM

(Parameter-Dependent Matrix) with domain equal to t. The argument w can

be ignored if no external inputs exist. After the command is issued, an ISIM

window along with the interactive control panel will appear, of which an example

is shown in Figure 4.1. The control panel was originally designed to (i) specify

a time for the simulation to pause by entering a number for the hold time; (ii)

start, pause, resume, or exit the simulation process; etc.

• RealSim (Real-time Simulation) processor allows the user to simulate the con-

troller on a real-time basis. The plant can be a hardware device such as an LSS,

or a superblock model implemented in SystemBuild. The controller model in

SystemBuild connected with the possibly existing plant model is turned into an

executable C, ADA or Fortran code via the AutoCode. IA (Interactive Anima-

tion) icons can be included in the simulation model in the RealSim processor

to interactively monitor the simulation results and control the magnitudes of

the external input to the simulation model. HCE (Hardware Connection Edi-

tor) allows the user to connect the RealSim processor with any existing (plant)
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Figure 4.1: An ISIM example

hardwares. The graphical user interface of the RealSim processor is shown in

Figure 4.2 from which it can be observed that the standard procedure of the

RealSim process includes:

- Generate the real-time (.rtJ) file for the simulation (controller) model in

SystemBuild.

- Generate the C, ADA or Fortran executable code for the simulation model.

- Compile and link the executable code.

- Generate an IA diagram.

- Connect the AC-100 to associated hardwares.

- Download the executable code to the AC-100, and run the simulation.

CODA is aimed at providing not only a GUI multi-objective design environment,

but also an automation tool for the interaction with the ISIM module and the Re-

alSim processor. It is also desirable that the user can update the controller in the

simulation model on an on-line basis. Two new features in MATRIXx 5.0 CACE

environment help to reach the goals, which are SBA (SystemBuild Access) and RVE

(Run-time Variable Editor). These two new features and their applications in CODA

are discussed in the next two sections. A UCI (User-Callable Interface) allowing the

user to display the ISIM results on the function windows of CODA is described in
Section 4.4.
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Figure 4.2: RealSim Graphical User Interface

4.2 Automated Modeling of Controller and Feedback Sys-
tems via SBA

The SBA feature provides an Xmath interface into the SystemBuild database. This

interface is a collection of Xmath commands and functions that allow the user to cre-

ate, modify, query, and delete SystemBuild diagrams. These commands and functions

include, but are not restricted to:

CreateSuperBlock

CreateBlock

DeleteSuperBlock

CreateConnection

ModifySuperBlock

ModifyBlock

DeleteBlock (4.1)

When the simulation phase is initiated in CODA:

1. A prototype controller model currently implemented in a BlockScript block will

be loaded into the SystemBuild;

2. The SBA feature is then applied to

• modify the parameter values in the controller model, such as the sizes of

inputs, outputs and states, and the state-space matrices;

• for the ISIM case, connect the controller to a plant simulation model given

by the user to form a feedback model for simulation.
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The controller or feedback model in SystemBuild is then ready for (i) ISIM, or (ii)

starting the standard RealSim setup process shown in Figure 4.2.

Given a plant superblock model by the user for ISIM, the feedback simulation

model in Figure 4.1 is constructed by CODA via the SBA commands in (4.1), except

that the plant superblock has been expanded by the user via the 'Expand SuperBlock'

button in the 'Edit' menu of SystemBuild.

4.3 Update of Controller Parameter via RVE

In a design cycle of CODA, various designs can be obtained and tested via the ISIM

module or the RealSim processor. Previously, if a new controller was to be simulated,
we had to

1. quit the current ISIM or RealSim session;

2. modify the controller model;

3. start a new simulation session;

which was very inefficient and would slow down the design cycle. As a new feature

in MATRIXx, RVE allows the user to change the %Variable values in many System-

Build intrinsic blocks during the execution of an ISIM or RealSim test-bed session.

Unfortunately, the state-space block and the UCB are currently not supported in

RVE. The controller model is therefore implemented in the BlockScript block which

is fully supported in RVE for both ISIM and RealSim cases.

The %Variables in the BlockScript block of the controller model indicate

• the state-space matrices of the nominal controller,

• the coefficient matrices in the Q expansion (see (2.5)),

which completely determine a controller model in CODA. Each time the user would

like to update the controller design during simulation, he/she just has to push a

button (see Figures 5.15 and 5.17) to invoke an updating functionality in CODA to

update the %Variable values and, hence, the controller model in the ISIM or the

RealSim process, via the Xmath RVE commands such as

rve_start, rye_put, rye_update, rye_stop.

The Xmath RVE commands

attach_acl00, rve_quit,

are also used for the RealSim case to connect or detach Xmath from the RealSim

processor.
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By utilizing RVE in CODA to interact with the ISIM module or the RealSim

processor, the ISIM or the RealSim session has to be invoked only once for each

design cycle, and the controller designs can be updated in the simulation process on

an on-line basis. It helps to speed up the design cycle significantly.

Figure 1.1 provides a brief picture about updating the controller parameter via

the RVE in CODA for both ISIM and RealSim processes.

4.4 ISIM Results Appearing on GUI Windows via a UCI

It is very desirable to have the simulation results displayed on the created time-domain

function windows so that the user can monitor the simulation process by

• checking the simulation output values;

• comparing the simulation results with the time-domain responses or design spec-
ifications on the GUI windows.

To have the ISIM outputs displayed on the GUI windows:

1. A prototype UCB implemented in SystemBuild to serve as a UCI (User-Callable

Interface) is loaded into SystemBuild;

2. The inputs of the UCB are then connected from the simulation outputs of

interest via the SBA commands.

As an example, the UCB called 'display_on_window' in Figure 4.1 functions as a

UCI for ISIM. What the UCB does during simulation includes:

• collecting the output data;

• writing the data to Xmath at a certain rate specified by the user.

The simulation outputs can then be displayed on the GUI windows as shown in

Figure 4.3, which are characterized by gray curves. The user can then compare the

simulation results with the time-domain responses or design specifications shown on

the GUI windows, or check the output values by moving the cursor to the points of

interest on the curve with the right button of mouse pushed.

The basic idea can be extended to the RealSim case except that the data will be

acquired in Xmath via a TCP/IP-based socket (ACSOCK) connected to a RealSim

processor. However, as of May 1996, this part remains to be finished.

Figure 1.1 provides a brief illustration about displaying the simulation results onto
the GUI windows in CODA.
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Figure 4.3: A GUI Window with Simulation Output Displayed

4.5 Conclusion

Utilizing the SBA and the RVE in Xmath, CODA provides a very convenient and

powerful automation environment for the interaction with the ISIM module and the

RealSim processor. The simulation model can be constructed automatically by CODA

via the SBA feature, and the controller parameter can be updated on an on-line basis

via the RVE facility. The UCB block served as a UCI for displaying the ISIM outputs

onto the time-domain function windows makes CODA a even more handy tool for

design.
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5 Graphical User Interface

5.1 Introduction

As is clear from Figure 1.1, the user interacts with CODA only through the GUI

facility in CODA. All of the other functionalities like preprocessing, optimization

algorithms, SBA and RVE Mathscripts, etc. are transparent to the user, and are

invoked by CODA itself as consequences of the user's interactions with CODA via

the GUI. The GUI facility in CODA provides the following desirable features:

In the design phase, the user's interaction with CODA basically stays at the

level of designing performance specifications on a graphical basis. The GUI in

CODA eliminates the need for the user to know the details of the underlying

toolbox language, and design and optimization algorithms.

In the simulation phase, the GUI facility is capable of interacting with the

ISIM module or the RealSim processor, and implementing and modifying the

simulation model on an automation and on-line basis. It helps to avoid invoking

an individual ISIM or RealSim session for testing each new controller design.

The GUI facility for CODA is designed to be intuitive, i.e., things mostly work

the way the user would guess that they should work. The on-line help system

provides all of the necessary and detailed information about using CODA as a

multi-objective design tool. Furthermore, the intelligent message and warning

system in CODA provides extensive status and error-detection messages to help

the user to monitor and adjust the design procedure. It turns out that even the

first-time user would find no difficulty using CODA for design.

Because of the user-friendly GUI facility, CODA appears to be a very effective, effi-

cient and handy tool for design.

The GUI facility of CODA is built upon a fully programmable GUI design envi-

ronment in Xmath. To use CODA, the user should:

have a user's understanding of X-windows and the window manager that the

user uses (e.g., the user should be able to move, resize, and iconify windows;

use a pull-down menu; use a scroll bar),

have a user's understanding of Xmath (enough to create a plant system object

or a plant superblock model in SystemBuild, at least),

know the basics of how to interact with an Xmath GUI application (e.g., use

a slider to set a parameter value, a variable-edit box to type in a value, data-

viewing and plot zooming),
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• know the basicsof control systemdesignasa plus (e.g., the definitions of band-
width, dB, stability, _2-norm (RMS) of a stable dynamic system,and the max-
imum singular valueof a (complex) matrix).

An introduction to Xmath, and a basicintroduction to X-windows, can be found in
the Xmath Basicsmanual. There are severalways the user can find out about the

basics of interacting with an Xmath GUI application:

A short discussion appears in several places, e.g., Chapter 1 of the Xmath GUI

Reference Manual, and Chapter 8 of the Xmath Basics Manual (v4.0).

Typing "help GUI" in the Xmath command window gives a good introduction.

Typing "guidemo" in the Xmath command window allows the user to start up

and play with several GUI demo applications; this allows the user to try out

sliders, pushbuttons, scroll bars, dataviewing, and so on, as the user reads about

them.

Once the user has mastered the basic mechanics of using an Xmath GUI applica-

tion, the user should be ready to get started. To start up CODA, type

coda

in the Xmath command window. After the CODA main window appears, the Xmath

command prompt will return. The user can now use Xmath and CODA simultane-

ously. The user can get a good overview of the features of CODA by scanning the

entries in the menu bars and reading the help messages in the help menu of the main

window.

It is worthwhile to mention that the basic CODA architecture shown in Figure

1.1 and the flow chart of a typical design cycle shown in Figure 1.2 provide an overall

idea about how CODA functions and how it can be fully utilized in control system

design. It is recommended that the first-time user go over these two diagrams first

before using CODA.

The remainder of this section gives a general descriptions on the GUI facility of

CODA.

5.2 CODA Main Window

A CODA main window is shown in Figure 5.1. It consists of, from top to bottom:

• A menu bar with File, Edit, Design, Simulation, Special, and Help menus;
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Figure 5.1: A CODA main window

43



• A collection of togglebuttons for selecting the function type (7Y2, Step, Im-

pulse, MSV or Integral Action), two extended-select scrolled lists for selecting

the function inputs and outputs, and the pushbutton Accept to preprocess the

function; Note that,

1. after the button Accept is pushed, a window will appear for each new

well-defined function with given default bound(s), and the function values

(for _2 functions) or the responses (for step, impulse, or MSV functions)

displayed for the most recent 3 designs (see Section 5.3). Note that the

function window can be closed by the user.

2. to define multiple integral pairs at one shot, select the inputs first and then

the corresponding outputs in pair on the list order of the selected inputs.

3. if the types of step or impulse is chosen, multiple inputs and multiple

outputs are allowed, which will result in a multiple-function window (see

Section 5.3.2).

4. the step function and the integral-action pair can be defined at the same

time. Integral-action pairs can also be added or removed from step windows

(see Section 5.3).

• Two extended-select scrolled lists for functions and integral-action pairs, which

contain the informations about the functions and the integral-action pairs; The

information for each function on the function list includes:

1. the function type;

2. the function input and output;

3. the RMS value and the upper bound for the "H2 functions;

the design function value (defined in (2.21) and (2.25)) for the step, impulse

and MSV functions;

4. the message of 'No display' if the function values or responses are currently

not displayed on any GUI window;

5. the message of 'Disabled' if the function is currently disabled, which means

it is not counted as one of design specifications.

• Four pushbuttons which are

1. Display: to create displaying windows for the functions selected from the

function list of which the corresponding windows have been closed (see

Section 5.3).

2. Fn(Dis)nbie: to enable (disable) the selected functions as parts of the de-

sign specifications if they are currently disabled (enabled). Note that the

design specifications are characterized by the design functions which are

not disabled. A new created function is not disabled by default. The func-

tions can be disabled or enabled via the GUI function windows as well (see

Section 5.3).
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3. TradeOff: to create a trade-off window for any two functions selected from

the scrolled lists (see Section 5.3.3).

4. Delete: to delete the functions or integral-action pairs selected from the

scrolled lists.

• A pushbutton 'Find Solution (with the name of the chosen optimization algo-

rithm)' for finding a solution to satisfy the design specifications; To switch to

another optimization algorithm, just choose another optimization algorithm via

the Optimization cascade button in the Design menu (see Section 5.2.3).

Other than the help menu, the menus on the menu bar of CODA main window

are introduced in the rest of this section.

5.2.1 File Menu

The File menu is used to communicate with Xmath, i.e., read plants and design

parameters from Xmath or SystemBuild, and write design parameters, controllers or
nominal controllers from CODA back to Xmath.

Load Plant

The first thing the user has to do after CODA is invoked is to load a 4-block plant

(see Figure 2.1) into CODA. A window will pop up for this purpose (see Figure 5.2),

which provides two ways for the user to input a plant design model:

o Select an object of system in Xmath. This can be done by first selecting the

partition name where the object resides, and then the object name from the

single-select scrolled lists. Note that all of the variables listed are objects of

system.

° Select a superblock model in SystemBuild, which needs not to be linear. The

user can also input the variable names for the initial input and state with which

a linearized model can be obtained from the selected model for design after the

Accept button is pushed. By default, the initial input and state vectors are

zeros.

For each of the two cases, CODA provides a default plant model which is meant to be

used when the user is learning to use CODA and needs a quick way to enter a plant.

Each plant model is derived from an LSS model. The default superblock model is a

linear discrete model which has the model diagram shown in Figure 5.3 with

# of states = 12,

# of external inputs (w) = 5,

# of actuator inputs = 3,

# of regulated outputs (z)

# of sensor outputs = 2.

= 5,
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Figure 5.2: The widget for loa.ding e_ plant design model
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Figure 5.3: The default plant superblock model in SystemBuild

The external input consists of 2 reference inputs and 3 disturbance inputs while the

regulated output is composed of 2 sensor outputs and 3 actuator inputs. The default

system object indicates a continuous system with

# of states = 20,

# of external inputs (w) =

# of actuator inputs = 2,

5, # of regulated outputs (z

# of sensor outputs = 3,

= 5,

and has a model diagram similar to that shown in Figure 5.3.

After the plant model is entered, the user has to specify the dimensions of the

external input (w) and the regulated output (z) to completely determine the plant

model. As can be seen from Figure 5.2, the information about the augmented 4-block

plant model like the type of the plant and the sizes of states, actuator inputs and

sensor outputs is provided for the user.

Read/Write Q design parameter from/to Xmath

The user can read the current design parameter from Xmath or write it from CODA

to Xmath. Referred to (2.5), the design parameter is stored in the form of

[Q0 Q1 _.. Q_q]

if the controller is not strictly proper, or

[Q1 Q2 -. Q,_q]

if the controller is strictly proper.

Write Nominal Controller to Xmath
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The nominal controller can be written back to Xmath for the other design purposes.

It can be represented by either of the following two ways (see Figure 2.2 and (2.1)):

1. the state-feedback gain and the output-injection gain;

2. a 4-block system object.

Note that if a set of state-feedback and output-injection gains stabilizes two different

plant models simultaneously, it will result in two different nominal controllers for

these two plants according to (2.1).

5.2.2 Edit Menu

The Edit menu is used to (i) change the function ranges, (ii) assign a new Q expansion,

and (iii) store the design parameter to the design pool or select the designs from the

pool.

Change Function Ranges

In CODA, the user can change (see Figure 5.4)

I_ you v_t to _t t_ _ d4ta to be tbs _fmlt

_1_ for f_rt]_i_ _ fm¢_i_

OYe_ 0 J_o

you v_t to set t_ _ _ta to be t]_ a-f_tlt

:for fo_ tim,-4o_iB fu_-t_

OY_ _ No

Figure 5.4: The widget to change function ranges for MSV functions and step/impulse
functions

• the maximum time span. Default = 20 (sec).

• the sampling rate (for the continuous-time case only). Default = 0.1 (sec).

for step and impulse functions; and
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• the minimum and maximum frequencies. Defaults are [0.01, 10] (Hz) for the
f0.ool 1continuous-time case, and _ _ , 27"o) (Hz) for the discrete-time case where 70

denotes the sampling rate.

• the # of sampling frequency points. Default = 30.

for MSV functions. The user can change function ranges either for the functions of the

same types selected from the function list or for the function to be created with the

function type has been chosen. The user can also have the new range setup become
the default one for the functions to be defined.

New Q-Expansion

The user can assign new Q expansions for design. The widget used to determine the

Q expansion and hence the parameter space is shown in Figure 5.5 where:

<_ s_t-ic O ILmjumrrm (_ Icaatz

rt Stnctllr

NI[]

O s¢_ ¢ _qwmm

+

os

..... . ..... +++1+i1•

•. , _+ +..
+1-1 '_ -05

0 st o..tl.?

ll_.l

-, rr 'l

Figure 5.5: Q-expansion widgets: Left - for the continuous-time case; Right - for the
discrete-time case

* there are 3 types of expansion (see Section 2.3):

1. Static: The Q dynamics is reduced to a static transfer matrix, i.e., (2.5) is
reduced to

Q(p,') - Qo(p).

This is the default Q expansion.

2. Laguerre expansion

3. Kautz expansion

• the pole of the Q expansion can be assigned by
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1. either entering numbers for the real and imaginary parts of the pole. Note

that the imaginary part is fixed to be equal to zero for the case of Laguerre

expansion.

2. or moving the cursor on the complex plane to the desired position with

the <control> key and the left button of the mouse pushed.

Since the Q dynamics should be stable, its pole should be assigned on the open

left half plane for the continuous-time case, or within the unit circle for the

discrete-time case. The pole of the Q expansion is marked by the solid dark

circle(s) in the complex plane. Note that the poles and the zeros of the nominal

closed-loop system marked by 'x' and 'o', respectively, in the light color are
shown for references.

the order of the expansion can be assigned by either entering a number for it

or pushing the qncrease' or 'decrease' buttons.

Design Pool

In the widget of design pool shown in Figure 5.6, the user can

00urrmt Design 0 L-_t lkm_ 0 Last 2mi _wi_

1. nm_a41

3. best dnmi._

I I I

Figure 5.6: The design pool

• store the design parameter to the design pool with a tag on it by (i) selecting

one of the most recent 3 design parameters, (ii) giving a comment like nominal

design, best design, etc. to it, and (iii) pushing the Accept button;

• select the design from the list of designs, and

1. push the Display button. The function values or responses corresponding

to the selected design will be displayed on the GUI function windows to

be introduced in Section 5.3.
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2. push the Delete button to remove the design from the design pool. Note

that more than one designs can be selected and then deleted at one time.

3. change the tag by typing a new comment and then pushing the Accept
button.

It is important to note that the design pool will be cleared up whenever

1. a new plant is loaded to CODA;

2. a new nominal controller is obtained;

3. the pole of the Q-expansion is changed;

4. the dimension of design parameter is decreased by either reducing the order of

Q-expansion, or adding new integral-action pairs.

5.2.3 Design Menu

The Design menu provides an interactive design environment where the user can:

* find a nominal controller;

• obtain a minimum-mean-square solution for the time-domain functions or the

7-/2 functions;

do the trade-off analysis between two designs by taking the convex combinations

of the corresponding two parameter points, and obtain a 'best compromised'

design from it;

• change the optimization algorithms;

• invoke a performance-meter window to monitor the values of design functions

during the design process.

CODA keeps track of the function values or responses for the most recent 3 design

points during the design process. These 3 designs called the current design, the last

design and the last 2nd design are denoted by P0, pl and p2 respectively.

Nominal Controller Design

After the plant is loaded, the user has to find a stabilizing nominal controller before

going ahead to define the design specifications and do the Q-parameter design. The

user can change the nominal controller during the design process. CODA provides 6

options for the user to find a (4-block) nominal controller:

1. Read a 4-block nominal controller from Xmath as an object of system with

(m, + n_) inputs and (m, + n_) outputs (see Figure 2.2 and Equation (2.1)).
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Set the state-feedback and output-injection gains to be zeros if the plant is

stable. The preprocessing scheme will be simplified for this special case.

Read the stabilizing state-feedback and output-injection gains from Xmath as

objects of matrices with appropriate dimensions. If the default discrete-time

plant model is used, CODA provides a set of stabilizing gains, 'coda regu gain'

and 'coda_esti gain', in Xmath for the user to obtain a stabilizing 4-block

nominal controller from (2.1).

Apply the LQG method to the given plant model, i.e., find a 4-block nomi-

nal controller by finding optimal state-feedback and output-injection gains to

minimize the 7"@norm (RMS) from w to z for the plant model.

Apply the LQG method to a plant model obtained from the plant design model

with selected external inputs and regulated outputs. This is for the case that

some external inputs and/or regulated outputs, like the reference input, may

not be relevant and should not be included in determining the regulator and

estimator gains.

Apply the LQG method to a simplified model shown in Figure 5.7, where Pv,_

denotes the one-block sub-model of the plant from the actuator input (u) to

t_

U

w_A.._
{ w,_

P_

5
I*

=Y

Figure 5.7: The simplified model for LQG design

the sensor output (y), the external input t_ consists of the actuator disturbance

wd and the output noise w,_, the regulated output 5 comes from the actuator

input u and the plant output yp, a indicates the ratio of the actuator disturbance

intensity and the sensor noise intensity, and _ denotes the ratio of the weighting

factors on the plant output and the actuator input. Given an actuator-to-sensor

plant model P_,, any positive scalars a and _ uniquely determine the output-

injection and the state-feedback gains respectively. Note that the model in

Figure 5.7 is derived from the 4-block plant design model given by the user only

for obtaining a nominal controller, and will be removed after that.

The window widget with the above 6 options is shown in Figure 5.8. If the user

choose the option of (1), (3), (5) or (6), a separate window will appear to ask for the
relevant information to determine a 4-block nominal controller.
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Figure 5.8: The widget for nominal controller design

Each time a new nominal controller is obtained during the design process, the

preprocessing scheme will be invoked to reprocess the functions have been created

based on the current function ranges, Q-expansion, and integral-action pairs. The

current design parameter p0 will be reset to be a zero vector, and the parameters px

and p2 will be set to be null vectors.

Minimum-Mean-Square Problems

The multi-objective design problem is basically a min-max optimization problem (see

the OP problem in (2.30), and (3.1)) which doesn't have an analytic solution. A

feasible solution can only be found by an optimization algorithm on an iterative ba-

sis. However, some minimum-mean-square problems may be derived from the design

problem, which have analytic solutions. The analytic solutions may serve as good

initial points for the optimization algorithms to find a solution. The following two

types of minimum-mean-square problems are considered in CODA:

1. Suppose there are m _2 functions {Fi(.)}irn=l expressed in the form of (see (2.12))

Fi(p) = prHip + pTgi + fi, 1 < i < rn.

Then there exists an analytic solution to the sum of the squares of the functions:

m

min _ F,2(p).
P

2. Consider the m step/impulse responses expressed by (see (2.17))

A@+b_, 1 < i < m
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with upper bounds {bi}_=l and lower bounds {b_},___,.There exists an analytic
solution to the following minimum-mean-squareproblem:

m

rain _lAip+bi bi + b, I_ .
p 2i=l

The widget used for this purpose is shown in Figure 5.9, where the user has the

Figure 5.9: The widget for defining minimum-mean-square problems

freedom of choosing the functions to define the minimum-mean-square problem.

Convex Combinations of Two Design Points

When this functionality is invoked, the last design will become the last 2nd design,

and the current design will become the last design, i.e.,

Pl _ P2, PO _ Pl,

and the current design point P0 will be set to be

Po = (1 - A)pl -b Ap2, 0 < A __ 1.

The user can change the value of A by moving the slider's handle or entering a number

as shown in Figure 5.10. Each time the user moves the slider's handle, the current

design point p0 will change, and the corresponding function values and/or responses

will be updated on the GUI function and trade-off windows (see Section 5.3). An

example is shown in Figure 5.11 where the solid point or curve displayed in the black

color indicates the function values or the step response corresponding to the design
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Frscti_ II beL_ema the beg_aning and the emd designs

Figure 5.10: The widget for convex combinations of two design points

Figure 5.11: Two interactive windows: right - An 7"t2 trade-off window; left - A step
window
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point in (5.2.3) with A = 0.87, and will move if the value of A changes. Note that

the RMS trajectory with A varying between 0 and 1 is shown on the 7ff2 trade-off
window.

Optimization Algorithms

The user can select one of the following 3 optimization algorithms as the solver for

design problems from the cascade button Optimization Algorithm:

1. Descent-Direction Method

2. Barrier-Function Method

3. Hybrid Method

The name of the selected optimization algorithm will appear in the pnshbutton Find

Solution on the bottom of the CODA main window (see Figure 5.1).

Performance Meter

The performance meter displays the design function values defined in (2.14), (2.21)

and (2.25) for the most recent 3 designs. It allows the user to observe how close the

design points are to the feasible region, and hence is helpful to monitor the design

process. An example of the performance meter is shown in Figure 5.12.

lrq_. | _t_clmt; L_mt i._t 2ad

dm_.al_i.m d_.atim 4evia_ciom

1 -..m o.:m', -..GI,I ill

U2 .-0. (X)_ -0.132 0.031 [
i

3 -0.609 1.731 0.133 I
S

4 O.OU -O.D01 0.0_ ]

IS -0.010 -0.010 -0.009

5 -0.00_ -0.009 -0.008

. .__._ ! ............ I................... o-.v.H _-r_ ........_ ..... . ...................... _ T-TT-_ _Tt-T,

Figure 5.12: A performance meter

5.2.4 Simulation Menu

The Simulation menu allows the user to interact with the ISIM module and the Real-

Sim processor to test the controller designs on an on-line basis.

Interactive Simulation

As a first step for the interaction with the ISIM module, a window will appear as

shown in Figure 5.13 to ask the user to:
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Figure 5.13: A GUI widget to acquire informations for ISIM
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select a plant simulation model in SystemBuild. If a default plant is used

for design, a default plant simulation model will be provided by CODA for

simulation. The default plant simulation model is the same as the default

design model except that some IA icons may be attached to the external inputs

and the regulated outputs of the plant simulation model.

enter the order of the Q expansion based on which a memory space is allocated

for the controller model so that as long as the order of Q expansion used in

design is no larger than the one entered here, the user can modify the controller
models in the ISIM module on an on-line basis.

specify the time variable and the external input variable (if applicable) in Xmath

as input arguments for ISIM, as well as the output variable in Xmath to which

the simulation outputs will write.

decide if the simulation results will be displayed on the step/impulse windows

in CODA. If the answer is positive, a separate window as shown in Figure 5.14

will pop up for the the user to decide:

Di_Fl_in _ Si_lation l_Its on llindo_

-_a

-I

S_a_em _tl_tl

Di_pl_ _tim

I

Figure 5.14: A GUI widget for acquiring informations on displaying simulation out-

puts on step/impulse windows

1. the outputs to be displayed.

2. the time-domain windows on which the outputs will be displayed. Note

that more than one outputs can be displayed on a window.

3. the rate at which the simulation outputs will be updated on the step or

impulse windows.
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After the required information is provided, the feedback simulation model will be

automatically constructed by CODA utilizing the SBA feature. The user then can

modify the feedback model, e.g., expand the plant superblock via the 'Expand Su-

perBlock' button in the 'Edit' menu of SystemBuild, add or delete IA icons, etc.

After this, an ISIM windows with a control panel will appear (see Figure 4.1). A

GUI widget as shown in Figure 5.15 will show up to allow the user to update the

controllers in the simulation model during simulation.

Jw

InteractiveSimulation ]" ]A]

Update C_troller[

[Quit Interacti_ Si_ulati_ I

, l

Figure 5.15: A GUI widget for updating the controllers in the interactive simulation

process

Real-Time Simulation

The procedure for setting up the interaction channel with a RealSim processor is

similar to the ISIM case except that:

The simulation model initially consists of the controller model only. The user

is not asked to supply with a plant model because the controller model may

be connected to a hardware plant model. However, similar to the ISIM case,

the user can modify the simulation model in SystemBuild before a real-time file

(.rtf) is created for it, and it is the time that the user can connect the controller

model to a plant model in SystemBuild to form a (feedback) simulation model
for real-time simulation.

• The simulation outputs currently cannot be displayed on the time-function win-
dows.

After the .rtf file is created for the simulation model, the user has to go over

the standard RealSim process shown in Figure 4.2 once. After that, CODA will

link the AC-100 with the Xmath session. A widget created by the RealSim pro-

cessor will appear as shown in Figure 5.16 to indicate that the communication

channel has been established between the Xmath session and the AC-100. Note

that the RealSim/AC-100 project directory should be the same as the current

Xmath working directory. Similar to the ISIM case, a GUI widget will appear as

shown in Figure 5.17 to allow the user to update the controllers in the RealSim

processor during simulation.
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Figure 5.16: The widget indicating the linkage between the Xmath session and an
AC-100
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Figure ,5.17: A GUI widget for updating the controllers in the RealSim processor
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5.2.5 Special Menu

The special menu is currently used to provide:

• the information on the plant design model as a reminder to the user about the

plant for which CODA is applied (see Figure 5.18).

_) l_ssa_e DIaIt:_

t_

This is a (defe_dt) discrete plmt vit_ period of 0.1 (tee), and

12 u4;&t.es,

S eztet_l inputs, S regulsted outpe_,

3 actuator inlpUts, 2 a_or outlputu.

I I

Figure 5.18: A widget showing the plant information

• the pole-zero plot for the closed-loop system corresponding to the current design.

An example is shown in Figure 5.19 where the poles and the zeros are marked

Figure 5.19: A widget showing the pole-zero plot of the closed-loop system corre-

sponding to the current design

by 'x' and 'o' respectively. The locations of the poles and zeros can be read by
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pointing the cursor to the point of interest with the right button of the mouse

pushed.

5.3 Interactive Function and Trade-off Windows

After the user selects the function type (H2, Step, Impulse or MSV), input and

output, and pushes the Accept button on the CODA main window (see Figure 5.1),

an interactive window with default bound(s) will show up. After the bounds are

modified, the corresponding design function (see (2.14), (2.21) and (2.25)) is well-

defined, and becomes a part of the design specifications unless the function is disabled.

The windows also allow the user to monitor the function values and responses during

the design process.

If a window is created for each function, too many windows may appear on the

screen. CODA allows more than one functions of the same type share a single window.

This helps to keep the number of windows created to the minimum.

It is worthwhile to mention that each function can be displayed on at most one

window which is either a single-function window or a multiple-function window.

A trade-off window can be created for any two functions selected from the func-

tion list on the CODA main window. It allows the user to study and monitor the

trade-off behavior between two functions, and is very useful in determining the ap-

propriate performance specifications for design. For the case that both two functions

are 7"t2 functions, a trade-off curve will appear on the window, which provides very

useful information on the trade-off behavior between these two 7"/2 functions.

The interactive windows will be discussed in more detail in the rest of the section.

5.3.1 Interactive Function Windows

_ Windows

An _2 window is shown in Figure 5.20 where:

• the user can input the upper bound (which is bl in (2.14)). The default upper

bound is the five times of the minimum value.

• the function values corresponding to the most recent 3 designs, as well as the

minimum RMS value are shown.

• the function information is shown in the scrolled text area below the menu bar

of the window.

• the status of activeness of the function as a part of design specifications is

controlled by the Disable togglebutton.
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Figure 5.20: An 7-/2 interactive window

• in the Special menu, the user can

1. obtain the design achieving the minimum RMS value.

2. close the window. After the window is closed, the function remains active

as one of the design specifications as long as it is not disabled.

Step/Impulse Windows

A step and an impulse windows are shown in Figure 5.21, where:

• in the Special menu,

1. the user can copy the bounds on the window for the other functions of the

same type.

2. for the step response, the user can change the asymptotic value which

is equal to 1 by default. Both upper and lower bounds will be shifted

vertically by the difference between the new and the old asymptotic values.

For the impulse response, the asymptotic value is fixed to be zero.

3. close the window. After the window is closed, the function remains active

as one of the design specifications as long as it is not disabled.

• the function information is shown in the scrolled text area below the menu bar

of the window.

• the status of activeness of the function as a part of design specifications is

controlled by the Disable togglebutton; the togglebutton Symmetric determines

if the upper and the lower bounds are symmetric to the asymptotic value. For

the step response, the user can push the Integral Action button to achieve the
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Figure 5.21" A step and an impulse windows

tracking requirement for the corresponding input-output pair, i.e., the steady-

state value of the step response will be equal to the asymptotic value specified

by the user.

• the undesired region is displayed in the color of lavender. The user can modify

the bounds by pointing the cursor to any of the line segments of the bounds and

dragging it with the <Control> key and the left button of the mouse pushed.

A widget as shown in Figure 5.22 will appear for the user to confirm or cancel

the changes of the bounds.

! 1 l'le _ are bein 9 mod.*_od ! I

I

Figure 5.22: A widget to confirm or cancel the changes of the bounds

, the responses associated with the most recent 3 designs will be shown, which

are plotted in the colors of black, red and blue for the current, the last and the

last 2nd design respectively.

• the user can re-scale the plot by moving the cursor to any of the boundaries

or corners of the plot area, and dragging it with the left button of the mouse

pushed. However, the x (time) axis cannot be re-scaled to be over the maximum
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time of the step or impulseresponse.The useris referredto the Function Range

button in the Edit menu on the main window for the change of the time span.

• the values of points on the curves can be displayed by pointing the cursor to

the point of interest on the curves with the right button of the mouse pushed.

MSV Window

A MSV window is shown in Figure 5.23 where:
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Figure 5.23: A MSV window

• in the Special menu, the user can

1. copy the bound on the window for the other MSV functions.

2. close the window. After the window is closed, the function remains active

as one of the design specifications as long as it is not disabled.

• the function information is shown in the scrolled text area below the menu bar

of the window.

• the status of activeness of the function as a part of design specifications is

controlled by the Disable togglebutton;

• the undesired region is displayed in the color of lavender. The user can modify

the bounds by pointing the cursor to one of the line segments or the cut-off point

on the bound, and dragging it with the <Control> key and the left button of
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the mouse pushed. It allows the user to specify the desired gain, bandwidth

and rolling rate for the MSV response. Similar to the step/impulse function, a

widget as shown in Figure 5.22 will appear for the user to confirm or cancel the

changes of the bound.

similar to the step/impulse case, the user can re-scale the plot by moving the

cursor to one of the boundaries or corners of the plot area, and dragging it with

the left button of the mouse pushed. However, the x (frequency) axis cannot be

re-scaled to be over the current frequency span of the MSV response. The user

is referred to the Function Range button in the Edit menu on the main window

for the change of the frequency span.

the values of the curves can be displayed by pointing the cursor to the point of

interest on the curves with the right button of the mouse pushed.

5.3.2 Multiple-Function Windows

To avoid too many windows appearing on the screen, CODA allows more than one

functions of the same type share a single window.

Multiple-H2 Windows

To create a multiple-7-(2 window, the user (i) first selects the undisplayed _2 functions

from the function list on the main window, and (ii) then pushs the Display button. A

multiple-_2 window is shown in Figure 5.24 which looks and functions similar to the

specita _10

il2 _z_im, [ref 1,re_ 2,d_lt 1,d_Bt 2,di_t: 31 to [eL-11

ql ' I
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Figure 5.24: A multiple-7% interactive window

7"/2 window in Figure 5.20 except that:

• only the information of an _2 function is displayed on the multiple-_2 window.

To display another function, the user can
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1. either push the Next Function button,

2. or select the function to be displayed from the function list on the main

window and push the Display button there.

• in the Special menu, the user can remove functions from the window, or add

other 7-12 functions to the window

Multiple-Step and Multiple-Impulse Windows

There are two ways that the user can create a multiple-step/impulse window:

. In the process of defining new functions, the user can choose multiple inputs

and/or multiple outputs in the main window with the Step or Impulse toggle-

button on, and then push the Accept button. The responses corresponding to

all possible combinations of the inputs and the outputs will be displayed on a

single window.

. Similar to the 7-/2 case, the user (i) first chooses the undisplayed step (impulse)

functions from the function list on the main window, and (ii) then pushs the

Display button.

A multiple-step and a multiple-impulse windows are shown in Figure 5.25 which looks

and functions similar to Figure 5.21 except that:

Figure 5.25: A multiple-step and a multiple-impulse windows

• all of the responses of the functions corresponding the current design are dis-

played. However, only one of the responses is highlighted. The responses of
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the highlighted function corresponding to the last and the last 2nd designs are

displayed and highlighted too. Only the bounds of the highlighted function are

shown with the undesired region displayed in the color of lavender. Similar to

the single-function case, the responses corresponding to the current, the last

and the last 2nd designs are plotted in the colors of black, red and blue, respec-

tively. The information about the highlighted function is shown in the scrolled

text area just below the menu bar of the window. To highlight another step or

impulse response, the user can

1. either push the Next Response button,

2. or select the function to be highlighted from the function list on the main

window and push the Display button there.

• in the Special menu, the user can remove step or impulse functions from the

window, or add other undisplayed step or impulse functions to the window.

All of the functionalities that a single-response window provides as described in Sec-

tion 5.3.1 are also afforded by a multiple-response window.

Multiple-MSV Windows

To create a multiple-MSV window, the user (i) first selects the undisplayed MSV

functions on the function list of the main window, and (ii) then pushs the Display

button. A multiple-MSV window is shown in Figure 5.26 which looks and functions

similar to Figure 5.23 except that:

• all of the responses of the functions corresponding the current design are dis-

played. However, only one of the responses is highlighted. The responses of

the highlighted function corresponding to the last and the last 2nd designs are

displayed and highlighted too. Only the bound of the highlighted function is

shown with the undesired region displayed in the color of lavender. Similar to

the single-function case, the responses corresponding to the current, the last

and the last 2nd designs are plotted in the colors of black, red and blue, respec-

tively. The information about the highlighted function is shown in the scrolled

text area just below the menu bar of the window. To highlight another MSV

response, the user can

1. either push the Next Response button,

2. or select the function to be highlighted from the function list on the main

window and push the Display button.

• in the Special menu, the user can remove MSV functions from the window, or

add other undisplayed MSV functions to the window.

All of the functionalities that a single-MSV window provides as described in Section

5.3.1 are also afforded by a multiple-MSV window.
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Figure 5.26: A multiple-MSV window

5.3.3 Trade-Off Windows

A trade-off window is created by choosing any two functions from the function list on

the CODA main window, and pushing the TradeOlq button. Each of the x and the y

axes of the plot on the trade-off window indicates the function value associated with

either of the chosen functions, which is equal to

• the RMS value for the 7"/2 function (see (2.12));

• the design function value defined in (2.21) or (2.25) for the step/impulse or
MSV function.

Two examples of the trade-off window are shown in Figure 5.27 where:

• there are at most 3 points shown on the trade-off window, which are marked by

solid circles, and have the colors of black, red and blue respectively correspond-

ing to the current, the last and the last 2nd designs.

• it is clear that, for a feasible design,

1. the corresponding RMS value of an 7-/2 function is bounded above by the

upper bound, and bounded below by the minimum value of the function;

2. the corresponding design function values defined in (2.21) and (2.25) for

the step, impulse and MSV functions are bounded above by 0. For the step
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Figure 5.27: Two trade-off windows

and the impulse functions, the design function values are bounded below

by

min(b - b
2 )'

where b and b denote the upper and the lower bounds respectively (see

(2.18)).

The above explains how the desired region in the white color in Figure 5.27

is formed. The gray region indicates the unreachable region, while the yellow

region indicates the undesired region.

* in the Special menu, the user can

1. exchange the two functions on the x and the y axes.

2. close the trade-off window.

• the information of the two functions defining the trade-off plot is shown on the

scrolled text area just below the menu bar.

• the status of activeness of the x-axis and the y-axis functions as parts of design

specifications is controlled by two togglebuttons.

• the user can re-scale the plot by moving the cursor to any of the boundaries

or corners of the plot area, and dragging it with the left button of the mouse

pushed.
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_2 Trade-Off Window

A trade-off window is called an _2 trade-off window if both two functions defining

the trade-off window are 7-/2 functions. An example of "H2 trade-off window is shown

in Figure 5.28 which looks similar to Figure 5.27 except that:

04

03

02

0.1

0
0 5 10 15 20

I..12

Figure 5.28: An T/2 trade-off window

a trade-off curve is shown, which is part of the boundary between the un-

reachable region and the reachable region. Each point on the trade-off curve

corresponds to a unique design which can be acquired by pointing the cursor

to the point of interest on the curve, and clicking the left button of the mouse

with <Control> and <Shift> keys pushed.

the bounds for the 7"12 functions can be changed by moving the cursor on the

reachable region with the left button of the mouse and the <Control> key

pushed. A widget shown in Figure 5.22 will appear for the user to confirm

or cancel the change of the bounds. The undesired region is displayed in the

color of lavender to indicate that the bounds of the "H2 functions, and hence the

undesired and the desired regions, can be changed on this window.
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